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Abstract-The necessary optimality conditions are developed for the problem of minimizing the
mass of a structural member subject to design constraints on two fundamental eigenvalues, namely
frequency of longitudinal vibration and Euler buckling load. The regions of the design space, in
which each of the constraints is active, are delineated. An effective numerical solution procedure is
derived and solutions are obtained for a wide range of the design variables for beams of both solid
cross-section and sandwich construction. The optimal designs are compared with a prismatic beam
satisfying the design constraints.

1. INTRODUCTION

Considerable attention has been given to eigenvalue problems in search of optimal designs
for elastic members. For example the problem ofmaximizing the buckling load ofan elastic
bar of given mass was posed by Lagrange[l] but the correct solution for a bar with simply
supported ends was not found until almost a century later by Clausen[2] and still later, but
independently, by Keller[3].

The optimal designs of columns with other homogeneous boundary conditions were
obtained by various authors[4-7]. The problem of maximizing the fundamental frequency
of transverse vibration of a simply support beam was solved by Niordson[8], other
authors[9-12] considered beams and plates with various boundary conditions. The problem
of the optimum design of a bar with respect to longitudinal vibration was solved by
Turner[13].

An extensive review of the optimization ofstructural elements with respect to structural
eigenvalues is given by Olhoff[14].

Seyranian[15, 16] has discussed the problem ofoptimizing a beam subjected to multiple
constraints including constraints on eigenvalues. No solutions were presented; rather he
proposes a "quasioptimal" solution method in which a solution ofthe optimization problem
subject to a single constraint is scaled so as to be made admissible to the problem with
multiple constraints and used as a "quasioptimal solution" to that problem. Karihaloo and
Parbery have examined the problems ofoptimizing a beam with dual constraints on buckling
load and fundamental frequency of transverse vibration[l7], and with constraints on the
fundamental frequencies of longitudinal and transverse vibrations[18]. A problem on the
optimization of a beam subjected to three eigenvalue constraints has been discussed
although no solutions were obtained[19]. Blachut [20] has dealt with the problem of opti­
mizing a column with tip mass under stability and transverse vibration constraints. The
problem considered by Blachut is of a different type to those considered in Refs [17,18]
and the present paper, inasmuch as in the former work the load actions are considered to
occur simultaneously whereas in the latter they are considered to occur at different times
in the life of the member.

In the work reported in this paper an algorithm has been developed for solving the
problem of minimizing the weight of a beam subjected to constraints on the fundamental
frequency of longitudinal vibration and on the buckling load. Numerical results have been
found, in the case of a cantilevered beam with a non-structural mass at the tip, for a range
of problem parameters.

t Permanent address: Department of Mechanical Engineering, University of Newcastle, N.S.W. 2308,
Australia.
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2. FORMULATION OF THE PROBLEM

Consider an elastic bar of length L, cross-sectional area A (x*), axial coordinate x*,
with principal moment l(x*) normal to the plane of bending and made of material with
Young's modulus E and density p. It is expected that the bar will be subjected to, at different
times in its design life, longitudinal vibration and axial static loads. It is desired to find the
variation of cross-sectional area along the member length which minimizes the weight
(volume) of the member for given lower bounds on the two eigenvalues mentioned above.

It is assumed that the moment of inertia I and the area A of the cross-section are
related by

(I)

where c and n are constants characteristic of the cross-sectional form.
For example n ~ I for a beam of sandwich construction or an I beam of constant

depth, n = 2 for geometrically similar cross-sections of variable dimensions, and n = 3 for
a rectangular beam of constant width but variable depth.

The differential equation describing the two types of behaviour are, in non-dimensional
form (refer to Fig. I)

for longitudinal vibrations

for buckling

aiwxx+P(w-w(l» = o.

(2)

(3)

Equations (2) and (3) must be accompanied by boundary conditions reflecting the
support conditions of the member and of any non-structural mass.

(i) For a cantilever with added mass at the tip the boundary conditions are

u(O) = 0

w(O) = wx(O) = O.

(ii) Boundary conditions for a pin-ended beam

u(O) = u(l) = 0

f_U_IX_)-x-------ee H

a

(4)

(5)

(6)

(7)

b

x

p

Fig. I. Beam with added mass at tip subjected to (a) longitudinal vibration and (b) Euler buckling.
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w(O) = w(l) = O.

Equations (2)-(8) have been put into non-dimensional form by letting
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(8)

IXI = A/L2
,

P= n2pL 2/E,

x = x*/L, u = u*/L, w = w*/L,

P = P*/EcL2(n-l), M = M*/pL 3

where u*(x*) is the axial displacement in longitudinal vibration, w*(x*) the deflection in
buckling, n the fundamental frequency of longitudinal vibration, p* the Euler buckling
load and M* the added mass. The asterisks, where used, indicate dimensional quantities.

We seek the function IX I(x) on [0,1] which minimizes the weight of the beam subject
to given lower bounds on the fundamental eigenvalues Pand P. Forming the Rayleigh
quotients for each of the eigenvalues, and assuming the density p to be constant, one may
reduce the optimization problem under consideration to

subject to

min v= f' IXI(X) dx
"I(X) Jo (9).

(10)

(11)

where Po, Po are prescribed positive constants; e = 0 for a simply supported beam and
e = 1 for a cantilevered beam; and where the eigenfunctions have been normalized by
making the maximum deflections equal to unity. Such normalization is possible because
the eigenfunctions are determined only as to shape and not to magnitude.

In order to derive the necessary optimality condition for the optimization problem
above, the following auxiliary functional is formed:

II = LIXI dX+ Jl [ (Po+r 2
) (L IX)U

2 dx+eM)-1' IXIU; dx]

+e[(Po+t2
) l' w; dx-LiX'jw;" dxJ (12)

where Jl and eare (constant) Lagrange multipliers and r2 and t 2 are positive slack variables.
We require that II be stationary with respect to IX" rand t.

Considering first the variations in II due to rand t

(13)

(14)



1166 R. D. PARliER)'

noting that the terms in parentheses are positive and that the variations in rand tare
arbitrary, one obtains, respectively

J.1 = 0 or r = 0

~ = 0 or t = O.

( 15)

( 16)

If any of the Lagrange multipliers vanish it means that the corresponding constraint
is inactive, i.e. the inequality sign applies in the corresponding constraint, eqn (10) or (II).

Assuming, for the present, that all constraints are active, that is r = t = 0, one obtains
from the stationarity of IT with respect to a 1

(17)

Recognizing that bal is an arbitrary function, one obtains the following optimality
condition

(18)

Equation (18) together with eqns (15) and (16) represents the necessary optimality
condition for the problem which must be solved together with the relevant equations, eqns
(2) and (3), with appropriate boundary conditions (4)-(6) or (7) and (8) and eigenvalue
constraints (10) and (11).

3. SOLUTION OF THE PROBLEM

The solution will now be considered in more detail for the particular example of the
cantilever with an added mass at the tip.

It is convenient to normalize al by M. Then the relevant equations, eqns (2)-(6), (10)
and (II), become, respectively

p
anwxx + M n(w- w(1)) = 0

u(O) = 0

w(O) = wAO) = 0

f au; dx

P= ~ Pof IXU
2 dx+ 1

(19)

(20)

(21 )

(22)

(23)

(24)

where a = aiIM.

p

Mn
(25)
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The optimality condition (18) can be rewritten as

where nM"- I have been included in e.
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(26)

3.1. Special cases
Before discussing the solution in general it is necessary to consider the special cases

suggested by eqns (IS) and (16) and delineate the regions of the design space where either
one or both of the constraints, eqns (24) and (25), are active.

When ~ =0, p. > 0 in the optimality condition (26), the problem is equivalent to that
of minimizing the volume subject to the constraint on the fundamental frequency of
longitudinal vibration alone. The solution to this problem was found by Turner[13] and is
described by the following equations:

where

u(x) = sinh (Cx)/sinh (C)

IX(X) = C sinh C cosh C/cosh2 (Cx)

Volume = sinh2 C

C = Jpo.

(27)

(28)

(29)

When the beam optimally designed for longitudinal vibrations is used as a column, the
critical buckling load may be found from eqns (20), (23) and (25) where IX is given by eqn
(28). A standard iterative method was used to evaluate the values of PIMn corresponding
to various given values of Po. The results are shown graphically in Figs 2-4.

The second special case is when p. = 0, ~ > O. This corresponds to the case of an
optimally designed column, which when used in the longitudinal vibration mode, will have
a fundamental frequency greater than that specified. Calculation of the frequency is not
straightforward because the optimal column[3-6] exhibits IX(1 ) =0; so that, in view of
boundary condition (22), Ux must exhibit a singularity at x = I. As is well known, a member
optimally designed for buckling load only, exhibits W xx "" (I_x)(I-n)/(n+ I), IX ,.., (l_x)2/1n+ I)

close to x = 1. In order to investigate the behaviour of u(x) in the vicinity of x = 1 write

IX(X) = C(x) (1_x)2/(n+ I) (30)

where C(x) is a regular non-zero function, and expand u(x) in the neighbourhood of x = I
as

u(x) = I +D(1-x)" + .,. (31)

where" is a positive non-integer number and D is constant. Substituting eqns (30) and (31)
into the differential equation, eqn (19), and considering the lowest power of (I-x) as well
as the need to satisfy boundary condition (22), shows that I( = (n-l)/(n+ 1).

Introducing a regular function I(x), we put

Ux = I(x) (1-X)-2/(n+ I), (32)

Integrating the differential equation, eqn (19), once with respect to x and using bound­
ary condition (22), we obtain

(33)
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Substituting eqns (30) and (32) into eqn (33) we get

f(x) = h(x)C(x). (34)

The fundamental frequency oflongitudinal vibrations of the optimally designed column
was found as follows with [0, I] divided into a large number of subintervals.

(i) Assume f(x) == I in the first iteration.
(ii) Find

(iii) Normalize u(x) and f(x) so that u(l) = I.
(iv) Calculate

f exu; dx

f3=-::----­f exu 2 dx+ I

(v) Calculate a new value for f(x)

f C(x)f2(x) (l_x)-2/(n+ I) dx

f C(x) (l-X)2/(n+ Il u2 dx+ I .

f(x) = h(x)jC(x).

(vi) Repeat steps (ii)-(v) until convergence of successive values of f3 where ex(x) and
C(x) refer to the optimal column and explicit expressions were formulated for integration,
within each subinterval, of terms containing powers of (I-x).

The results are shown in Figs 2-4 for n = 1,2,3, respectively. In region I the fun-
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Fig. 2. Division of the design space; n = 1.
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damental frequency of longitudinal vibration alone controls the design; in region II the
buckling loads alone controls the design; and in region III both constraints are active.

It may be noted in the case of n = I, that because of the nature of the singularity at
the free end of the optimal column, longitudinal vibrations are not possible. This means
that, for n = I, region II contains only the P-axis (i.e. points where p=0).

3.2. Dual-constraint optimization
Before discussing the solution in the case where both constraints are active, J1. > 0,

e> 0, it is necessary to check whether singularities occur in the solution for this case. To
that end we expand w, u and ex about x = I

w = w(l)+A I(I-x)+'" +B1(l-xY+ ...

u = u(I)+ .. , +B2(l-x)Q + ...
ex = C(l-x)'+'"

(35)
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where p is the lowest power in the expansion of w, not 0 or I, q is the lowest non-zero power
in the expansion of u, and r is the lowest power in the expansion of a about x = I.

Substituting eqns (35) into the differential equations, eqns (19) and (20), and optimality
condition (26) and considering the lowest powers of (1 - x) shows thal

p = 3, q = I, r = O. (36)

Furthermore the form ofthe solution suggested by eqns (35) and (36) is capable of satisfying
boundary condition (22) at x = 1. It is therefore concluded that singularities cannot occur
in th,~ solution at x = I when both constraints are active.

Attention is now turned to the solution of the problem with both constraints active.
Multiplying optimality condition (26) by a"+ I, making use of eqns (20) and (33), and

rearranging gives

(37)

The solution was again generated numerically at a large number of equally spaced discrete
points on [0, 1].

The algorithm used is given below.

(i) Specify Po, Po/M".
(ii) Set up initial approximations for ux, Wxx and a(x)

uAx) = I

wxAx) = 3(1-x)

(iii) Estimate values for Ji. and ~.

(iv) Find U.n U, Pfor the assumed values of a(x) :

(a) find

U(x) =rU~ dtl;

(b) normalize uix), u(x) so that u(l) = I;
(c) find

(d) find a new estimate for Ux

uAx) = p[1+fau dxJI a(x);

(e) repeat steps (iva-<i) until consecutive values of ux(l) converge.
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(v) Find WXX' Wn wand Po/M n for the assumed values of a(x):

(a) find

W, = rx

w~" dlJ
Ju

W = rx w" dlJ;
Jo

(b) normalize W.n • w... w so that w( I) = I ;
(c) find the critical load

(d) find a new estimate for wxx(x)

wxx =~n (I - w)/an
;

(e) repeat steps (va-d) until consecutive values of wxx(l) converge.

(vi) Find a new approximation for a(x)

a; =a'· ai_-(

where

[
( fl )2 (P )2]l/n+1

a = Jlp
2
a

n
-

1 1+J au dx +e :Ar(l-w)

I +JlPU 2

1171

and the subscript refers to the iteration number. The implicit equation for a was solved by
repeated substitution for the an

- I term-the integral was not re-evaluated at this step.
Values of r between 0.4 and 0.7 were found suitable.

(vii) Store the current values of ux(l), wxx(l), p, p/Mn and repeat steps (iv)-(vi) until
the consecutive values of these quantities converge.

(viii) Repeat steps (iii)-(vii) using Newton's method on Jl and euntil

p= Po
P Po

Mn = M n'

The gradients were found numerically so that each iteration of Newton's method required
three evaluations of steps (iii)-(vii). At steps (ive) and (ve) the convergence criteria used
was successive differences of less than 0.01 % and at step (vii) 0.001 % was found suitable.

4. DISCUSSION AND RESULTS

Steps (ii)-(vii) in the algorithm described above represent an "inverse" solution to the
problem where the Lagrange parameters, Jl, eare specified and the corresponding optimal
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Fig. 5. Values of Lagrange multipliers 1', ~ for the limiting cases and n = 1.

design is found. In most cases convergence was achieved quickly, within about 20 iterations.
In a few cases the application of Newton's method in step (viii) caused the values of fl, ~

to overshoot to infeasible values. The difficulty was overcome by restricting the amount by
which values of Jl and ~ were allowed to change on a single iteration.

The extreme values of the Lagrange multipliers against P/M" are shown in Figs 5-7
for n = 1-3. These are useful in choosing the initial estimates of fl and ~. The straight line
relationships (on log-log scales) of ~ against P/M" for the optimal column means that

for the optimal column, which is consistent with both (l(x) and u(x) having geometrically
similar shapes (but different magnitudes) for different values of P.
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The shapes of the optimal dual purpose beam are compared to those of the optimal
single purpose design in Figs 8-10 and, in more detail, in Tables 1-9 for various values of
P/Mn and p.

The optimal design may be compared with a prismatic beam in order to judge the
effectiveness of the optimization. A prismatic beam satisfying the design constraints has a
value of rJ. given by the greater of

rJ. =Jpo tan JPo (38)

or

(39)

It may be noted from eqo (38) that a prismatic design is not possible for Po ~ 1[2/4,
whereas an optimal design is still possible. The savings are shown in Table 10 for various
values of P, P/Mn

•
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X
Fig. 8. Shape of optimal member compared with the optimal column and optimal longitudinally

vibrating beam for PIM = I, various values of pand n = I.
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Table I. n = I, P/M = I

Optimum Optimum
column longitudinal beam
p= 0.00 p= 0.05 {J=O.IO P= 0.20 P= 0.30 fl=OJ41

!J 0.0 0.2644 x 10- 4 0.8656 x 10- 4 0.01357 0.4236 1.119
r 0.25 0.24999 0.24999 0.2495 0.1725 0.0
~

.I" a.lM
0.0 0.500 0.500 0.500 0.499 0.469 0.424
0.1 0.495 0.495 0.495 0.494 0.465 0.423
0.2 0.480 0.480 0.480 0.479 0.452 0.418
0.3 0.455 0.455 0.455 0.454 0.432 D.411
0.4 0.420 0.420 0.420 0.419 0.404 0.402
0.5 0.375 0.375 0.375 0.374 0.368 0.390
0.6 0.320 0.320 0.320 0.319 0.327 0.376
0.7 0.255 0.255 0.255 0.255 0.282 0.360
0.8 0.180 0.180 0.180 0.181 0.238 0.343
0.9 0.0950 0.0950 0.0950 0.0984 0.202 0.326
1.0 0.000 0.257 X 10- 3 0.930 x 10- 3 0.0298 0.184 0.307

Table 2. n = I, P/M = 10

Optimum Optimum
column longitudinal beam
p = 0.00 p= 0.05 fJ = 1.0 P= 1.5 P= 1.75 P= 1.887

!J 0.0 0.2712 x 10- 4 0.1137 x 10- 3 0.7800 X 10- 2 0.08956 1.810
~ 0.25 0.24999 0.24999 0.24929 0.2397 0.0
x a.lM

0.0 5.00 5.00 5.00 5.00 5.00 5.34
0.1 4.95 4.95 4.95 4.95 4.94 5.24
0.2 4.80 4.80 4.80 4.80 4.79 4.95
0.3 4.55 4.55 4.55 4.55 4.53 4.52
0.4 4.20 4.20 4.20 4.20 4.18 4.00
0.5 3.75 3.75 3.75 3.75 3.72 3.44
0.6 3.20 3.20 3.20 3.20 3.17 2.89
0.7 2.55 2.55 2.55 2.55 2.53 2.37
0.8 1.80 1.80 1.80 1.80 1.80 1.92
0.9 0.950 0.950 0.950 0.955 1.03 1.53
1.0 0.00 0.260 X 10- 2 0.0107 0.132 0.487 1.21

Table 3. n = I, P/M = 1000

Optimum Optimum
column longitudinal beam
p= 0.0 P=5 P= 10 P= 20 fJ = 25 fJ = 31.0

!J 0.0 0.08227 1.858 27.62 104.4 556.6
~ 0.25 0.2440 0.2764 0.7081 1.075 0.0
x a.lM

0.0 500.0 543.0 1630.0 12,200.0 31,000.0 96,300.0
0.1 495.0 535.0 1490.0 10,100.0 24,000.0 71,600.0
0.2 480.0 509.0 1160.0 6030.0 13,000.0 33,800.0
0.3 455.0 470.0 809.0 2960.0 5610.0 12,700.0
0.4 420.0 420.0 525.0 1320.0 2200.0 4360.0
0.5 375.0 362.0 333.0 576.0 840.0 1450.0
0.6 320.0 299.0 211.0 254.0 321.0 479.0
0.7 255.0 232.0 135.0 117.0 127.0 158.0
0.8 180.0 161.0 82.9 56.7 52.9 51.7
0.9 95.0 84.0 41.1 24.8 20.8 17.0
1.0 0.0 1.21 3.08 4.47 5.00 5.57



1176 R. D. PARBERY

Table 4. n = 2. P/M' = I

Optimum Optimum
column longitudinal beam

p = 0.3513 fJ = 0.375 fJ = 0.400 fJ = 0.450 P= 0.475 P= 0.4998

/1 0.0 0.2635 x 10-' 0.01834 0.2168 0.5176 1.178
~ 0.3972 0.3966 0.3930 0.3372 0.2401 0.0
x 'Y.\/M

0.0 0.735 0.735 0.734 0.726 0.713 0.684
0.1 0.731 0.730 0.730 0.721 0.709 0.680
0.2 0.717 0.717 0.716 0.708 0.696 0.670
0.3 0.694 0.693 0.693 0.685 0.674 0.654
0.4 0.660 0.660 0.659 0.652 0.643 0.632
0.5 0.615 0.615 0.614 0.608 0.603 0.605
0.6 0.557 0.557 0.557 0.553 0.553 0.574
0.7 0.483 0.483 0.483 0.484 0.493 0.540
0.8 0.388 0.388 0.388 0.398 0.425 0.504
0.9 0.258 0.258 0.260 0.292 0.354 0.468
1.0 0.00 0.0192 0.0540 0.200 0.306 0.430

Table 5. n = 2, P/M' = 10

Optimum Optimum
column longitudinal beam
p= 1.00 P= 1.05 fJ=1.1O P= 1.15 P= 1.20 P= 1.210

/1 0.0 0.002975 0.1140 0.1165 0.8021 1.474
~ 0.1256 0.1254 0.1242 0.1140 0.05824 0.0
x 'Y.\/M

0.0 2.32 2.32 2.32 2.33 2.37 2.45
0.1 2.31 2.31 2.31 2.31 2.35 2.42
0.2 2.27 2.27 2.27 2.27 2.29 2.34
0.3 2.19 2.19 2.19 2.19 2.19 2.20
0.4 2.09 2.09 2.09 2.08 2.05 2.03
0.5 1.95 1.94 1.94 1.94 1.89 1.83
0.6 1.76 1.76 1.76 1.75 1.69 1.63
0.7 1.53 1.53 1.52 1.52 1.47 1.42
0.8 1.23 1.23 1.23 1.22 1.22 1.23
0.9 0.817 0.817 0.819 0.835 0.965 1.04
1.0 0.00 0.0572 0.154 0.365 0.767 0.880

Table 6. n = 2, P = 1000

Optimum Optimum
column longitudinal beam

fJ = 3.27 P= 3.5 fJ = 4.5 P= 5.5 fJ = 6.5 P= 6.83

II 0.0 0.1955 1.336 2.982 5.568 6.754

~ 0.01256 0.01142 0.7195xlO-' 0.4296 x 10 -, 0.1253 x 10-' 0.00
x 'Y.\/M

0.0 23.2 25.2 40.1 65.0 104.0 122.0

0.1 23.1 24.9 38.6 61.7 97.8 114.0

0.2 22.7 24.1 34.7 52.8 81.3 93.9

0.3 21.9 22.7 29.4 41.7 61.1 69.6

0.4 20.9 21.1 23.9 30.9 42.6 47.7

0.5 19.5 19.1 19.1 22.1 28.2 31.0

0.6 17.6 16.8 15.1 15.7 18.2 19.5

0.7 15.3 14.3 11.8 11.2 11.5 11.9

0.8 12.3 11.3 8.90 7.88 7.32 7.22

0.9 8.17 7.42 5.80 5.04 4.50 4.33

1.0 0.00 1.19 1.96 2.28 2.52 2.59
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Table 7. n = 3, P/MJ = I

Optimum Optimum
column longitudinal beam

p=0.505 P= 0.52 P= 0.54 P=0.56 P=0.568

Jl 0.00 0.04978 0.2504 0.7931 1.204
~ 0.4642 0.4483 0.3781 0.1691 0.00
x (f.1/M

0.0 0.825 0.825 0.821 0.814 0.808
0.1 0.821 0.821 0.818 0.810 0.804
0.2 0.810 0.810 0.806 0.806 0.790
0.3 0.792 0.790 0.786 0.797 0.768
0.4 0.764 0.762 0.753 0.748 0.739
0.5 0.726 0.725 0.720 0.710 0.704
0.6 0.676 0.675 0.671 0.664 0.663
0.7 0.610 0.609 0.607 0.608 0.619
0.8 0.520 0.520 0.522 0.543 0.573
0.9 0.386 0.389 0.404 0.472 0.527
1.0 0.00 0.114 0.~54 0.415 0.480

Table 8. n = 3, P/M 3 = 10

Optimum Optimum
column longitudinal beam

p = 0.966 P= 0.985 p=l.oo P= 1.02 P= 1.03 p=I.04

Jl 0.0 0.02966 0.1057 0.4402 0.8959 1.398, 0.1000 0.09807 0.09283 0.06879 0.03559 0.0
x al/M

0.0 1.78 1.78 1.78 1.80 1.84 1.92
0.1 1.77 1.77 1.77 1.79 1.83 1.90
0.2 1.75 1.75 1.75 1.76 1.79 1.85
0.3 1.71 I.71 1.71 1.71 1.72 1.75
0.4 1.65 1.64 1.64 1.64 1.64 1.64
0.5 1.56 1.56 1.56 1.55 1.53 1.50
0.6 1.46 1.45 1.45 1.43 1.40 1.35
0.7 1.31 1.31 1.31 1.28 1.25 1.20
0.8 1.12 1.12 1.11 1.10 1.08 1.05
0.9 0.833 0.833 0.835 0.851 0.881 0.913
1.0 0.00 0.167 0.309 0.562 0.703 0.784

Table 9. n = 3, P/M 3 = 1000

Optimum Optimum
column longitudinal beam
p= 2.39 P= 2.75 P= 3.00 P= 3.25 p= 3.5 P= 3.67

Jl 00.00 1.008 1.584 2.116 2.644 3.006, 0.4642 x 10- 2 0.2192x 10- 2 0.1264 x 10- 2 0.6700 x 10- 3 0.2374 x 10- 3 0.00
x al/M

0.0 8.25 10.9 13.4 16.3 19.6 22.1
0.1 8.22 10.7 13.0 15.8 18.9 21.3
0.2 8.10 10.0 12.0 14.4 17.1 19.1
0.3 7.92 9.17 10.6 12.4 14.5 16.1
0.4 7.64 8.17 9.02 10.2 11.7 12.9
0.5 7.26 7.18 7.52 8.19 9.12 9.87
0.6 6.76 6.23 6.21 6.44 6.90 7.32
0.7 6.10 5.23 5.11 5.05 5.14 5.29
0.8 5.20 4.38 4.11 3.93 3.81 3.76
0.9 3.86 3.23 3.02 2.87 2.73 2.64
1.0 0.00 1.42 1.57 1.68 1.78 1.83
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Table 10. Comparison of the optimally designed beam
with the prismatic design

1l=1

PIM fJ V -V
pn5m opt X J00 0/0

Vprism

1 0.10 17.8
10 1.0 17.8

1000 10.0 t

1l=2

PIM l fJ V· -V
pmm opt X 1000/0

Vprism

I 0.4 13.4
10 1.10 13.4

1000 4.5 t

n=3

PIMl fJ V· -V
pnsm opt X 1000,lg

Vprism

I 0.54 10.7
10 1.02 11.0

1000 3.00 t

t Denotes that a prismatic design is not possible.
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